Penelitian IKM/Epidemiologi

Oleh: Suyatno, Ir. MKes

Contact:

E-mail: suyatnofkmundip@gmail.com

Blog: suyatno.blog.undip.ac.id

Hp/Telp: 08122815730 / 024-70251915

Descriptive studies

Examine patterns of disease

Analytical studies

Studies of suspected causes of diseases

Experimental studies

Compare treatment modalities

Hierarchy of Epidemiologic Study Design

Case reports

Generate hypotheses

Case series

Ecologic studies

Cross-sectional studies

Case-control studies

Cohort studies

Randomized controlled trials

Observational Studies

(no control over the circumstances)

- <u>Descriptive</u>: Most basic demographic studies
- Analytical: Comparative studies testing an hypothesis
 - * cross-sectional

(a snapshot; no idea on cause-and-effect relationship)

* cohort

(prospective; cause-and-effect relationship can be inferred)

* case-control

(retrospective; cause-and-effect relationship can be inferred)

Analytical Studies

(comparative studies testing an hypothesis)

* cohort (prospective)

Begins with an exposure (smokers and non-smokers)

* case-control (retrospective - trohoc)

Begins with outcome (cancer cases and healthy controls)

Cohort Studies

Advantages of Cohort Studies

- Can establish population-based incidence
- Accurate relative risk (risk ratio) estimation
- Can examine rare exposures (asbestos > lung cancer)
- Temporal relationship can be inferred (prospective design)
- Time-to-event analysis is possible
- Can be used where randomization is not possible
- Magnitude of a risk factor's effect can be quantified
- Selection and information biases are decreased
- Multiple outcomes can be studied (smoking > lung cancer, COPD, larynx cancer)

Disadvantages of Cohort Studies

- Lengthy and expensive
- May require very large samples
- Not suitable for rare diseases
- Not suitable for diseases with long-latency
- Unexpected environmental changes may influence the association
- Nonresponse, migration and loss-to-follow-up biases
- Sampling, ascertainment and observer biases are still possible

Presentation of cohort data: Population at risk

Does HIV infection increase risk of developing TB among a population of drug users?

Population (follow up 2 years)		Cases	
HIV +	215	8	
HIV -	289	1	

Source: Selwyn et al., New York, 1989

Does HIV infection increase risk of developing TB among drug users?

Exposure	Population (f/u 2 years)	Cases	Incidence (%)	Relative Risk
HIV +	215	8	3.7	11
HIV -	298	1	0.3	

Presentation of cohort data: Person-years at risk

Tobacco smoking and lung cancer, England & Wales, 1951

	Person-years	Cases
Smoke	102,600	133
Do not smoke	42,800	3

Source: Doll & Hill

Presentation of data: Various exposure levels

Daily number of cigarettes smoked	Person-years at risk	Lung cancer cases
> 25	25,100	57
15 - 24	38,900	54
1 - 14	38,600	22
none	42,800	3

Cohort study: Tobacco smoking and lung cancer, England & Wales, 1951

Cigarettes smoked/d	Person-years at risk	Cases	Rate per 1000 p-y	Rate ratio	
> 25	25,100	57	2.27	32.4	
15 - 24	38,900	54	1.39	19.8	
1 - 14	38,600	22	0.57	8.1	
none	42,800	3	0.07	Ref.	

Source: Doll & Hill

Prospective cohort study

Retrospective cohort studies

Cohort Studies

Figure 2: Schematic diagram of concurrent, retrospective, and ambidirectional cohort studies

Cohort Studies

Panel 2: Features to look for in a cohort study

How much selection bias was present?

- 1 Were only people at risk of the outcome included?
- 1 Was the exposure clear, specific, and measurable?
- 1 Were the exposed and unexposed groups similar in all important respects except for the exposure?

What steps were taken to minimise information bias?

- 1 Was the outcome clear, specific, and measurable?
- 1 Was the outcome identified in the same way for both groups?
- 1 Was determination of outcome made by an observer blinded as to treatment?

How complete was the follow-up of both groups?

- 1 What efforts were made to limit loss to follow-up?
- 1 Was loss to follow-up similar in both groups?

Were potential confounding factors sought and controlled for in the analysis?

- 1 Did the investigators anticipate and gather information on potential confounding factors?
- 1 What method(s) were used to assess and control for confounding?

Case-Control Studies

Case-Control Studies

Advantages of Case-Control Studies

- Cheap, easy and quick studies
- Multiple exposures can be examined
- Rare diseases and diseases with long latency can be studied
- Suitable when randomization is unethical (alcohol and pregnancy outcome)

Disadvantages of Case-Control Studies

- Case and control selection troublesome
- Subject to bias (selection, recall, misclassification)
- Direct incidence estimation is not possible
- Temporal relationship is not clear
- Multiple outcomes cannot be studied
- If the incidence of exposure is high, it is difficult to show the difference between cases and controls
- Not easy to estimate attributable fraction
- Reverse causation is a problem in interpretation especially in molecular epidemiology studies

Sources of Error in Epidemiologic Studies

Random error

Large sample size, replication

Bias

Be careful

Confounding

Effect Modification

Reverse Causation

Confounding can be controlled by:

- Randomization: assures equal distribution of confounders between study and control groups
- Restriction: subjects are restricted by the levels of a known confounder
- Matching: potential confounding factors are kept equal between the study groups
- Stratification for various levels of potential confounders
- Multivariable analysis (does not control for effect modification)

Effect modification can be assessed by:

- Stratification for various levels of potential confounders
- Multivariable analysis (by assessing interaction)

Reverse causation can be assessed by:

- Mendelian Randomization